3.240 \(\int \frac{1}{(e \cos (c+d x))^{3/2} (a+a \sin (c+d x))} \, dx\)

Optimal. Leaf size=112 \[ -\frac{6 E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{e \cos (c+d x)}}{5 a d e^2 \sqrt{\cos (c+d x)}}+\frac{6 \sin (c+d x)}{5 a d e \sqrt{e \cos (c+d x)}}-\frac{2}{5 d e (a \sin (c+d x)+a) \sqrt{e \cos (c+d x)}} \]

[Out]

(-6*Sqrt[e*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(5*a*d*e^2*Sqrt[Cos[c + d*x]]) + (6*Sin[c + d*x])/(5*a*d*e
*Sqrt[e*Cos[c + d*x]]) - 2/(5*d*e*Sqrt[e*Cos[c + d*x]]*(a + a*Sin[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.0968475, antiderivative size = 112, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.16, Rules used = {2683, 2636, 2640, 2639} \[ -\frac{6 E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{e \cos (c+d x)}}{5 a d e^2 \sqrt{\cos (c+d x)}}+\frac{6 \sin (c+d x)}{5 a d e \sqrt{e \cos (c+d x)}}-\frac{2}{5 d e (a \sin (c+d x)+a) \sqrt{e \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[1/((e*Cos[c + d*x])^(3/2)*(a + a*Sin[c + d*x])),x]

[Out]

(-6*Sqrt[e*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(5*a*d*e^2*Sqrt[Cos[c + d*x]]) + (6*Sin[c + d*x])/(5*a*d*e
*Sqrt[e*Cos[c + d*x]]) - 2/(5*d*e*Sqrt[e*Cos[c + d*x]]*(a + a*Sin[c + d*x]))

Rule 2683

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*(g*Cos[e
 + f*x])^(p + 1))/(a*f*g*(p - 1)*(a + b*Sin[e + f*x])), x] + Dist[p/(a*(p - 1)), Int[(g*Cos[e + f*x])^p, x], x
] /; FreeQ[{a, b, e, f, g, p}, x] && EqQ[a^2 - b^2, 0] &&  !GeQ[p, 1] && IntegerQ[2*p]

Rule 2636

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1))/(b*d*(n +
1)), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2640

Int[Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[b*Sin[c + d*x]]/Sqrt[Sin[c + d*x]], Int[Sqrt[Si
n[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{1}{(e \cos (c+d x))^{3/2} (a+a \sin (c+d x))} \, dx &=-\frac{2}{5 d e \sqrt{e \cos (c+d x)} (a+a \sin (c+d x))}+\frac{3 \int \frac{1}{(e \cos (c+d x))^{3/2}} \, dx}{5 a}\\ &=\frac{6 \sin (c+d x)}{5 a d e \sqrt{e \cos (c+d x)}}-\frac{2}{5 d e \sqrt{e \cos (c+d x)} (a+a \sin (c+d x))}-\frac{3 \int \sqrt{e \cos (c+d x)} \, dx}{5 a e^2}\\ &=\frac{6 \sin (c+d x)}{5 a d e \sqrt{e \cos (c+d x)}}-\frac{2}{5 d e \sqrt{e \cos (c+d x)} (a+a \sin (c+d x))}-\frac{\left (3 \sqrt{e \cos (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx}{5 a e^2 \sqrt{\cos (c+d x)}}\\ &=-\frac{6 \sqrt{e \cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 a d e^2 \sqrt{\cos (c+d x)}}+\frac{6 \sin (c+d x)}{5 a d e \sqrt{e \cos (c+d x)}}-\frac{2}{5 d e \sqrt{e \cos (c+d x)} (a+a \sin (c+d x))}\\ \end{align*}

Mathematica [C]  time = 0.0563637, size = 63, normalized size = 0.56 \[ \frac{\sqrt [4]{\sin (c+d x)+1} \, _2F_1\left (-\frac{1}{4},\frac{9}{4};\frac{3}{4};\frac{1}{2} (1-\sin (c+d x))\right )}{\sqrt [4]{2} a d e \sqrt{e \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((e*Cos[c + d*x])^(3/2)*(a + a*Sin[c + d*x])),x]

[Out]

(Hypergeometric2F1[-1/4, 9/4, 3/4, (1 - Sin[c + d*x])/2]*(1 + Sin[c + d*x])^(1/4))/(2^(1/4)*a*d*e*Sqrt[e*Cos[c
 + d*x]])

________________________________________________________________________________________

Maple [B]  time = 1.286, size = 304, normalized size = 2.7 \begin{align*} -{\frac{2}{5\,ade} \left ( 12\,{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}} \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}-24\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{6}\cos \left ( 1/2\,dx+c/2 \right ) -12\,{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}} \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+24\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}\cos \left ( 1/2\,dx+c/2 \right ) +3\,\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) -8\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}\cos \left ( 1/2\,dx+c/2 \right ) +\sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) \left ( 4\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}-4\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1 \right ) ^{-1} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}e+e}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*cos(d*x+c))^(3/2)/(a+a*sin(d*x+c)),x)

[Out]

-2/5/(4*sin(1/2*d*x+1/2*c)^4-4*sin(1/2*d*x+1/2*c)^2+1)/a/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*e+e)^(1/2
)/e*(12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*si
n(1/2*d*x+1/2*c)^4-24*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)-12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(
1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2+24*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*
x+1/2*c)+3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))
-8*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+sin(1/2*d*x+1/2*c))/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (e \cos \left (d x + c\right )\right )^{\frac{3}{2}}{\left (a \sin \left (d x + c\right ) + a\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cos(d*x+c))^(3/2)/(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

integrate(1/((e*cos(d*x + c))^(3/2)*(a*sin(d*x + c) + a)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{e \cos \left (d x + c\right )}}{a e^{2} \cos \left (d x + c\right )^{2} \sin \left (d x + c\right ) + a e^{2} \cos \left (d x + c\right )^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cos(d*x+c))^(3/2)/(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

integral(sqrt(e*cos(d*x + c))/(a*e^2*cos(d*x + c)^2*sin(d*x + c) + a*e^2*cos(d*x + c)^2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cos(d*x+c))**(3/2)/(a+a*sin(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (e \cos \left (d x + c\right )\right )^{\frac{3}{2}}{\left (a \sin \left (d x + c\right ) + a\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cos(d*x+c))^(3/2)/(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

integrate(1/((e*cos(d*x + c))^(3/2)*(a*sin(d*x + c) + a)), x)